Imputación de datos en la gestión de recursos compartidos en sistemas distribuidos
Palabras clave:
Sistemas Operativos, Operadores de Agregación, Modelo de Decisión, Imputación de Datos, Aputación de Datos, K-Means, K-NN, Medias PonderadasResumen
Los sistemas distribuidos se componen de múltiples nodos que intercambian información entre sí, para mantener la red conectada, cada nodo es único e independiente y puede tener una capacidad de procesamiento diferente a los demás. En esta propuesta se considera que hay un nodo central que se encarga de recibir y mantener actualizada la información de control de todos ellos, y es el encargado de la asignación de recursos en la modalidad de exclusión mutua, asegurando la disponibilidad de los mismos y respetando las prioridades de los procesos.
En un determinado ciclo de recolección de información de gestión, necesaria para ejecutar y asegurar lo mencionado anteriormente, el nodo central puede recibir de alguno de los nodos información de control incompleta o inexistente, por ejemplo, de los criterios de evaluación de carga nodal, de las prioridades o preferencias de los procesos, etc. Estos datos faltantes, constituyen un obstáculo importante en la gestión de recursos. Las técnicas de imputación de datos permiten estimarlos utilizando diferentes algoritmos, mediante los cuales, se puede imputar una característica importante para una instancia en particular.
Esta investigación propone el uso de imputación de valores faltantes sobre la información de control en el contexto de los Sistemas Distribuidos. Se incorpora una capa de imputación/asignación a un modelo de decisión, que permite completar los valores faltantes con valores estimados, necesarios para establecer un correcto orden de asignación de recursos a los procesos.
Descargas
Citas
Abril, Daniel, Guillermo Navarro-Arribas, and Torra Vicenc. (2014). “Aprendizaje Supervisado Para El Enlace de Registros a Través de La Media Ponderada.” Actas de La XIII Reunión Española Sobre Criptología y Seguridad de La Información (RECSI 2014) 281–84.
Agostini, F., D. L. La Red Martínez, and J. C. Acosta. (2018). “Modeling of the Consensus in the Allocation of Resources in Distributed Systems.” International Journal of Advanced Computer Science and Applications 9(12). doi: 10.14569/IJACSA.2018.091204.
Agostini, F. (2019). “Nueva Propuesta Para La Administración de Recursos y Procesos En Sistemas Distribuidos.” Universidad Nacional del Nordeste.
Agostini, F., and D. L. La Red Martínez. (2019). “Allocation of Shared Resources.” 14th Iberian Conference on Information Systems and Technologies - CISTI 2019 1–6.
Agostini, Federico, D. L. la Red Martínez, and Julio C. Acosta. (2019). “Assignment of Resources in Distributed Systems with Strict Consensus Requirements.” in IMCIC 2019 - 10th International Multi-Conference on Complexity, Informatics and Cybernetics, Proceedings. Vol. 1.
Agrawal, Divyakant, and Amr El Abbadi. (1991). “An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion.” ACM Transactions on Computer Systems (TOCS) 9(1). doi: 10.1145/103727.103728.
Alagarsamy, K. (2003). “Some Myths about Famous Mutual Exclusion Algorithms.” ACM SIGACT News 34(3). doi: 10.1145/945526.945527.
Aljuaid, Tahani, and Sreela Sasi. (2016). “Proper Imputation Techniques for Missing Values in Data Sets.” in Proceedings of the 2016 International Conference on Data Science and Engineering, ICDSE 2016.
Baez, Diego, Maricruz Olazabal, and Jorge Romero. (2019). Toma de Decisiones Empresariales a Través de La Media Ponderada Ordenada. Vol. 19.
Bagrodia, Rajive. (1989). “Process Synchronization: Design and Performance Evaluation of Distributed Algorithms.” IEEE Transactions on Software Engineering 15(9). doi: 10.1109/32.31364.
Batista, Gustavo E. A. P. A., and Maria Carolina Monard. (2015). “A Study of K-Nearest Neighbour as a Model-Based Method to Treat Missing Data.” Machine Learning (August).
Berchtold, André, and Joan Carles Surís. (2017). “Imputation of Repeatedly Observed Multinomial Variables in Longitudinal Surveys.” Communications in Statistics: Simulation and Computation 46(4). doi: 10.1080/03610918.2015.1082588.
Birman, Kenneth P., and Thomas A. Joseph. (1987). “Reliable Communication in the Presence of Failures.” ACM Transactions on Computer Systems (TOCS) 5(1). doi: 10.1145/7351.7478.
Birman, Kenneth, André Schiper, and Pat Stephenson. (1991). “Lightweight Causal and Atomic Group Multicast.” ACM Transactions on Computer Systems (TOCS) 9(3). doi: 10.1145/128738.128742.
Birman, Kenneth P. (2005). Reliable Distributed Systems: Technologies, Web Services, and Applications.
Cao, Guohong, and Mukesh Singhal. (2001). “A Delay-Optimal Quorum-Based Mutual Exclusion Algorithm for Distributed Systems.” IEEE Transactions on Parallel and Distributed Systems 12(12). doi: 10.1109/71.970560.
Cartwright, M. H., M. J. Shepperd, and Q. Song. (2003). “Dealing with Missing Software Project Data.” in Proceedings - International Software Metrics Symposium. Vols. 2003-Janua.
Casleton, Emily, Dave Osthus, and Kendra Van Buren. (2018). “Imputation for Multisource Data with Comparison and Assessment Techniques.” in Applied Stochastic Models in Business and Industry. Vol. 34.
Chang, Gang, and Tongmin Ge. (2011). “Comparison of Missing Data Imputation Methods for Traffic Flow.” in Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering, TMEE 2011.
Chao, Xiangrui, Gang Kou, and Yi Peng. (2016). “An Optimization Model Integrating Different Preference Formats.” in 2016 6th International Conference on Computers Communications and Control, ICCCC 2016.
Chen, J., and J. Shao. (2000). “Nearest Neighbor Imputation for Survey Data.” Journal of Official Statistics 16(2).
Chen, Chen T. (2001). “Applying Linguistic Decision-Making Method to Deal with Service Quality Evaluation Problems.” International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems 9(SUPPL.). doi: 10.1142/S0218488501001022.
Chiclana, F., E. Herrera-Viedma, F. Herrera, and S. Alonso. (2004). “Induced Ordered Weighted Geometric Operators and Their Use in the Aggregation of Multiplicative Preference Relations.” International Journal of Intelligent Systems 19(3). doi: 10.1002/int.10172.
Chiclana, Francisco, Francisco Chiclana, Francisco Herrera, and Enrique Herrera-viedma. (2000). “The Ordered Weighted Geometric Operator: Properties and Application in MCDM Problems.” IN PROC. 8TH CONF. INFORM. PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGEBASED SYSTEMS 985–91.
Chiclana, F., F. Herrera, and E. Herrera-Viedma. (2001). “Integrating Multiplicative Preference Relations in a Multipurpose Decision-Making Model Based on Fuzzy Preference Relations.” Fuzzy Sets and Systems 122(2). doi: 10.1016/S0165-0114(00)00004-X.
Choudhury, Suvra Jyoti, and Nikhil R. Pal. (2019). “Imputation of Missing Data with Neural Networks for Classification.” Knowledge-Based Systems 182. doi: 10.1016/j.knosys.2019.07.009.
Cicirelli, Franco, and Libero Nigro. (2016). “Modelling and Verification of Mutual Exclusion Algorithms.” in Proceedings - IEEE International Symposium on Distributed Simulation and Real-Time Applications, DS-RT.
Clarke, M. R. B., Richard O. Duda, and Peter E. Hart. (1974). “Pattern Classification and Scene Analysis.” Journal of the Royal Statistical Society. Series A (General) 137(3). doi: 10.2307/2344977.
Cover, T. M., and P. E. Hart. (1967). “Nearest Neighbor Pattern Classification.” IEEE Transactions on Information Theory 13(1):21–27. doi: 10.1109/TIT.1967.1053964.
De Leeuw, Edith D. (2001). “Reducing Missing Data in Surveys: An Overview of Methods.” Quality and Quantity 35(2).
Dong, Yucheng, Hengjie Zhang, and Enrique Herrera-Viedma. (2016). “Consensus Reaching Model in the Complex and Dynamic MAGDM Problem.” Knowledge-Based Systems 106. doi: 10.1016/j.knosys.2016.05.046.
Downey, Ronald G., and Craig V. King. (1998). “Missing Data in Likert Ratings: A Comparison of Replacement Methods.” Journal of General Psychology 125(2). doi: 10.1080/00221309809595542.
Dubes, R. C., and A. K. Jain. (1988). “Algorithms for Clustering Data.” Prentice Hall College.
Farhangfar, Alireza, Lukasz A. Kurgan, and Witold Pedrycz. (2007). “A Novel Framework for Imputation of Missing Values in Databases.” IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans 37(5). doi: 10.1109/TSMCA.2007.902631.
Fodor, János, and Marc Roubens. (1994). Fuzzy Preference Modelling and Multicriteria Decision Support.
Forc, Juan I., Miguel Pagola, Barrenechea Edurne, and Humberto Bustince. (2018). “Adaptación Automática Del Operador de Pooling Aprendiendo Pesos de Medias Ponderadas Ordenadas En Redes Neuronales Convolucionales.” XVIII Conferencia de La Asociación Española Para La Inteligencia Artificial (CAEPIA) 1225–30.
Freund, John E., and Gary A. Simon. (1994). “Estadística Elemental.” Pp. 43–44 in. Naucalpan de Juárez, Edo. de México.
Fullér, R. (1996). “OWA Operators in Decision Making.” Exploring the Limits of Support Systems, TUCS General Publications 3.
García-Melón, M., J. Ferrís-Oñate, J. Aznar-Bellver, and R. Poveda-Bautista. (2006). “Farmland Appraisal: An Analytic Network Process (ANP) Approach.”
García-Laencina, P. J., G. Rodríguéz-Bermúdez, J. L. Roca-González, J. Roca-González, and J. Roca-Dorda. (2012). “Técnicas de Vecindad Para La Estimación de Información Incompleta En Problemas de Diagnosis Médica.” XX Congreso Anual de La Sociedad Española de Ingeniería Biomédica (CASEIB 2012).
Gediga, Günther, and Ivo Düntsch. (2003). “Maximum Consistency of Incomplete Data via Non-Invasive Imputation.” Artificial Intelligence Review 19(1). doi: 10.1023/A:1022188514489.
Gómez, Daniel, Karina Rojas, Javier Montero, J. Tinguaro Rodríguez, and Gleb Beliakov. (2014). “CONSISTENCIA Y ESTABILIDAD EN OPERADORES DE AGREGACIÓN: Una Aplicación Al Problema de Datos Perdidos.” ESTYLF 2014 XVII CONGRESO ESPAÑOL SOBRE TECNOLOGÍAS Y LÓGICA FUZZY 289–96.
Greco, Salvatore, Benedetto Matarazzo, and Roman Slowinski. (2002). “Rough Sets Methodology for Sorting Problems in Presence of Multiple Attributes and Criteria.” European Journal of Operational Research 138(2). doi: 10.1016/S0377-2217(01)00244-2.
Gu, Daqian, and Yang Gao. (2005). “Incremental Gradient Descent Imputation Method for Missing Data in Learning Classifier Systems.”
Huisman, Mark. (2000). “Imputation of Missing Item Responses: Some Simple Techniques.” Quality and Quantity 34(4). doi: 10.1023/A:1004782230065.
Huisman, Mark. (2014). “Imputation of Missing Network Data: Some Simple Procedures.” in Encyclopedia of Social Network Analysis and Mining.
Husson, François, Julie Josse, Balasubramanian Narasimhan, and Geneviève Robin. (2019). “Imputation of Mixed Data With Multilevel Singular Value Decomposition.” Journal of Computational and Graphical Statistics 28(3). doi: 10.1080/10618600.2019.1585261.
Jönsson, Per, and Claes Wohlin. (2004). “An Evaluation of K-Nearest Neighbour Imputation Using LIkert Data.” in Proceedings - International Software Metrics Symposium.
Joseph, Thomas A., and Kenneth P. Briman. (1989). Reliable Broadcast Protocols, in Distributed Systems. Ithaca, NY 14853-7501.
Joshi, Rajeev, and Gerard J. Holzmann. (2007). “A Mini Challenge: Build a Verifiable Filesystem.” Formal Aspects of Computing 19(2). doi: 10.1007/s00165-006-0022-3.
Kaashoek, Marinus Frans. (1992). Group Communication in Distributed Computer Systems. Amsterdam.
Kalton, Graham, and Daniel Kasprzyk. (1982). IMPUTING FOR MISSING SURVEY RESPONSES. University of Michigan.
Kamei, Sayaka, and Hirotsugu Kakugawa. (2018). “An Asynchronous Message-Passing Distributed Algorithm for the Global Critical Section Problem.” in Proceedings - 2017 5th International Symposium on Computing and Networking, CANDAR 2017. Vols. 2018-Janua.
Kaufman, Leonard., and Peter J. Rousseeuw. (1990). Finding Groups in Data: An Introduction to Cluster Analysis (Wiley Series in Probability and Statistics). Vol. 66.
La Red Martínez, D. L., J. M. Doña, J. I. Peláez, and E. B. Fernández. (2011). “WKC-OWA, a New Neat-OWA Operator to Aggregate Information in Democratic Decision Problems.” International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems 19(5):759–79. doi: 10.1142/S0218488511007222.
La Red Martinez, David L., and Julio C. Acosta. (2014). “Perspectives of New Decision Making Models of Processes Synchronization in Distributed Systems.” INTERNATIONAL JOURNAL OF MANAGEMENT & INFORMATION TECHNOLOGY 9(1). doi: 10.24297/ijmit.v9i1.671.
La Red Martínez, D. L., and N. Pinto. (2015). “Brief Review of Aggregation Operators.” Wulfenia 22-N° 4:114–37.
La Red Martínez, David L., and Julio C. Acosta. (2015a). “Review of Modeling Preferences for Decision Models.” European Scientific Journal 11(36):1–19.
La Red Martínez, David L., and Julio C. Acosta. (2015b). “Aggregation Operators Review - Mathematical Properties and Behavioral Measures.” International Journal of Intelligent Systems and Applications 7(10):63–76. doi: 10.5815/ijisa.2015.10.08.
La Red Martínez, David L. (2017). “Aggregation Operator for Assignment of Resources in Distributed Systems.” International Journal of Advanced Computer Science and Applications 8(10). doi: 10.14569/ijacsa.2017.081053.
La Red Martínez, D. L., F. Agostini, and C. Primorac. (2017). “Modelo de Asignación de Recursos Para La Enseñanza de Los Procesos Distribuidos.” Primer Congreso Latinoamericano de Ingeniería - CLADI.
La Red Martínez, David L., Julio C. Acosta, and Federico Agostini. (2018). “Assignment of Resources in Distributed Systems.” in IMCIC 2018 - 9th International Multi-Conference on Complexity, Informatics and Cybernetics, Proceedings. Vol. 2.
La Red Martínez, David Luis. (2004). Sistemas Operativos. EUDENE - Argentina.
Laird, R. J., and Rubin D.B. (1987). “Statistical Analysis with Missing Data.”
Lamport, Leslie. (1978). “Time, Clocks, and the Ordering of Events in a Distributed System.” Communications of the ACM 21(7). doi: 10.1145/359545.359563.
Little, Roderick J. A., and Donald B. Rubin. (2002). Statistical Analysis with Missing Data.
Lodha, Sandeep, and Ajay Kshemkalyani. (2000). “A Fair Distributed Mutual Exclusion Algorithm.” IEEE Transactions on Parallel and Distributed Systems 11(6). doi: 10.1109/71.862205.
Lu, J., and D. Ruan. (2007). Multi-Objective Group Decision Making: Methods, Software and Applications with Fuzzy Set Techniques. London: Imperial College Press.
Lu, Cheng Bo, and Ying Mei. (2018). “An Imputation Method for Missing Data Based on an Extreme Learning Machine Auto-Encoder.” IEEE Access 6. doi: 10.1109/ACCESS.2018.2868729.
Macedonia, Michael R., Michael J. Zyda, David R. Pratt, Donald P. Brutzman, and Paul T. Barham. (1995). “Exploiting Reality with Multicast Groups: A Network Architecture for Large-Scale Virtual Environments.” in Proceedings - Virtual Reality Annual International Symposium.
Madhu, G., and T. V. Rajinikanth. (2012). “A Novel Index Measure Imputation Algorithm for Missing Data Values: A Machine Learning Approach.” in 2012 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2012.
Marakas, G. (2002). “Decision Support Systems.” New Jersey, USA.
Martínez, Luis, Jun Liu, and Jian Bo Yang. (2006). “A Fuzzy Model for Design Evaluation Based on Multiple Criteria Analysis in Engineering Systems.” International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems 14(3). doi: 10.1142/S0218488506004035.
Martínez, Luis, Jun Liu, Da Ruan, and Jian Bo Yang. (2007). “Dealing with Heterogeneous Information in Engineering Evaluation Processes.” Information Sciences 177(7). doi: 10.1016/j.ins.2006.07.005.
Mehala, B., and K. Vivekanandan. (2008). “An Analysis on K-Means Algorithm as an Imputation Method to Deal with Missing Values.” Asian Journal of Information Technology 7:434–41.
Multivariate Imputation by Chained Equations. (2020). [Online]. Available: https://cran.r-project.org/web/packages/mice/index.html.
Musil, Carol M., Camille B. Warner, Piyanee Klainin Yobas, and Susan L. Jones. (2002). “A Comparison of Imputation Techniques for Handling Missing Data.” Western Journal of Nursing Research 24(7). doi: 10.1177/019394502762477004.
Myrtveit, Ingunn, Erik Stensrud, and Ulf H. Olsson. (2001). “Analyzing Data Sets with Missing Data: An Empirical Evaluation of Imputation Methods and Likelihood-Based Methods.” IEEE Transactions on Software Engineering 27(11). doi: 10.1109/32.965340.
Nelwamondo, Fulufhelo Vincent, and Tshilidzi Marwala. (2007). “Rough Sets Computations to Impute Missing Data.”
Ngoc Chau, Vo Thi, and Nguyen Hua Phung. (2018). “An Effective and Robust Self-Training Algorithm Using k-Means and Random Forest Models for Program-Level Student Classification.” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018.
Nilsson, Petra. (2016). “An Imputation Model for Dropouts in Unemployment Data.” Journal of Official Statistics 32(3). doi: 10.1515/JOS-2016-0036.
Patil, Bankat M., Ramesh C. Joshi, and Durga Toshniwal. (2010). “Missing Value Imputation Based on K-Mean Clustering with Weighted Distance.” Communications in Computer and Information Science 94 CCIS(PART 1):600–609. doi: 10.1007/978-3-642-14834-7_56.
Peláez, J., J. M. Dona, and D. La Red. (2003). “Analysis of the Majority Process in Group Decision Making Process.” Proceedings of the 7th Joint Conference on Information Sciences.
Peláez, J., and J. M. Doña. (2003). “Majority Additive-Ordered Weighting Averaging: A New Neat Ordered Weighting Averaging Operator Based on the Majority Process.” International Journal of Intelligent Systems 18(4). doi: 10.1002/int.10096.
Peláez, J., JM Dona, and D. La Red. (2004). “Majority Opinion in Group Decision Making Using the Qma-Owa Operator.” 449–54.
Peláez, J., J. M. Doña, and J. A. Gómez-Ruiz. (2007). “Analysis of OWA Operators in Decision Making for Modelling the Majority Concept.” Applied Mathematics and Computation 186(2). doi: 10.1016/j.amc.2006.07.161.
Peláez, J., J. M. Doña, and D. L. La Red Martínez. (2009). “A Mix Model of Discounted Cash-Flow and OWA Operators for Strategic Valuation.” International Journal of Interactive Multimedia and Artificial Intelligence 1(2).
Preda, Cristian, Alain Duhamel, Monique Picavet, and Tahar Kechadi. (2005). “Tools for Statistical Analysis with Missing Data: Application to a Large Medical Database.” in Studies in Health Technology and Informatics. Vol. 116.
Primorac, Carlos Roberto, David Luís La Red Martínez, and Mirta Eve Giovannini. (2020). “Metodología De Evaluación Del Desempeño De Métodos De Imputación Mediante Una Métrica Tradicional Complementada Con Un Nuevo Indicador.” European Scientific Journal ESJ 16(18). doi: 10.19044/esj.2020.v16n18p61.
Raaijmakers, Quinten A. W. 1999. “Effectiveness of Different Missing Data Treatments in Surveys with Likert-Type Data: Introducing the Relative Mean Substitution Approach.” Educational and Psychological Measurement 59(5).
Rahman, M. Mostafizur, and D. N. Davis. (2013). Machine Learning-Based Missing Value Imputation Method for Clinical Datasets. Vol. 229 LNEE.
Ricart, Glenn, and Ashok K. Agrawala. (1981). “An Optimal Algorithm for Mutual Exclusion in Computer Networks.” Communications of the ACM 24(1). doi: 10.1145/358527.358537.
Roy, Amarjit, Joyeeta Singha, Lalit Manam, and Rabul Hussain Laskar. (2017). “Combination of Adaptive Vector Median Filter and Weighted Mean Filter for Removal of High-Density Impulse Noise from Colour Images.” IET Image Processing 11(6):352–61. doi: 10.1049/iet-ipr.2016.0320.
Rubin, Donald B. (1976). “Inference and Missing Data.” Biometrika 63(3):581–92.
Van Renesse, Robbert, Kenneth P. Birman, and Werner Vogels. (2003). “Astrolabe: A Robust and Scalable Technology for Distributed System Monitoring, Management, and Data Mining.” ACM Transactions on Computer Systems 21(2). doi: 10.1145/762483.762485.
Saaty, T. L. (1980). “The Analytic Hierarchy Process.” MacGraw Hill.
Sande, I. G. (1983). “Hot-Deck Imputation Procedures.” Madow, W. G. and Olkin, I., Eds. 3:334–50.
Santos, Miriam Seoane, Ricardo Cardoso Pereira, Adriana Fonseca Costa, Jastin Pompeu Soares, Joao Santos, and Pedro Henriques Abreu. (2019). “Generating Synthetic Missing Data: A Review by Missing Mechanism.” IEEE Access 7:11651–67. doi: 10.1109/ACCESS.2019.2891360.
Scheffer, J. (2002). “Dealing with Missing Data.” Madow, W. G. and Olkin, I., Eds., Incomplete Data in Sample Surveys 3:153–60.
Schouten, Rianne Margaretha, Peter Lugtig, and Gerko Vink. (2018). “Generating Missing Values for Simulation Purposes: A Multivariate Amputation Procedure.” Journal of Statistical Computation and Simulation 88(15):2909–30. doi: 10.1080/00949655.2018.1491577.
Schouten, Rianne Margaretha, and Gerko Vink. (2018). “The Dance of the Mechanisms: How Observed Information Influences the Validity of Missingness Assumptions.” Sociological Methods and Research. doi: 10.1177/0049124118799376.
Si, Yanna, Jiexin Pu, Shaofei Zang, and Lifan Sun. (2021). “Extreme Learning Machine Based on Maximum Weighted Mean Discrepancy for Unsupervised Domain Adaptation.” IEEE Access 9:2283–93. doi: 10.1109/ACCESS.2020.3047448.
Silberschatz, A., P. Baer G, and G. Gagne. (2006). Fundamentos de Sistemas Operativos. Interamericana de España. S.A.U. España: Mc Graw-Hill.
Song, Qinbao, Martin Shepperd, and Michelle Cartwright. (2005). “A Short Note on Safest Default Missingness Mechanism Assumptions.” Empirical Software Engineering 10(2). doi: 10.1007/s10664-004-6193-8.
Stallings, William. (2005). Sistemas Operativos Aspectos Internos y Principios de Diseño. Vol. Quinta Edi.
Strike, Kevin, Khaled El Emam, and Nazim Madhavji. (2001). “Software Cost Estimation with Incomplete Data.” IEEE Transactions on Software Engineering 27(10). doi: 10.1109/32.962560.
Tanenbaum, AS, G. Guerrero, and ÓAP Velasco. (1996). Sistemas Operativos Distribuidos. México: Prentice-Hall Hispanoamericana S.A.
Tanenbaum, A. S., and M. Van Steen. (2008). Sistemas Distribuidos - Principios y Paradigmas. 2da. México: Pearson Educación S. A.
Tanenbaum, Andrew S. (2009). Sistemas Operativos Modernos Tercera Edición.
The R Project for Statistical Computing. (2020). “The R Project for Statistical Computing.”
Todeschini, Roberto. (1990). “Weighted K-Nearest Neighbour Method for the Calculation of Missing Values.” Chemometrics and Intelligent Laboratory Systems 9(2). doi: 10.1016/0169-7439(90)80098-Q.
Troyanskaya, Olga, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David Botstein, and Russ B. Altman. (2001). “Missing Value Estimation Methods for DNA Microarrays.” Bioinformatics 17(6). doi: 10.1093/bioinformatics/17.6.520.
Twala, Bhekisipho. (2009). “An Empirical Comparison of Techniques for Handling Incomplete Data Using Decision Trees.” Applied Artificial Intelligence 23(5):373–405. doi: 10.1080/08839510902872223.
Vallejos, Oscar, Maria Valesani, and Enzo Rigonatto. (2011). “Técnicas de Minería de Datos Aplicada a Bases de Datos Imputadas.” Escuela Superior Politécnica Del Litoral.
Wilks, S. S. (1932). “Moments and Distributions of Estimates of Population Parameters from Fragmentary Samples.” The Annals of Mathematical Statistics 3(3). doi: 10.1214/aoms/1177732885.
Yager, Ronald. (1988). “On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decisionmaking.” IEEE Transactions on Systems, Man and Cybernetics 18(1):183–90. doi: 10.1109/21.87068.
Yager, Ronald. (1993). “Families of OWA Operators.” Fuzzy Sets and Systems 59(2). doi: 10.1016/0165-0114(93)90194-M.
Yager, Ronald, and Janusz Kacprzyk. (1997). The Ordered Weighted Averaging Operators: Theory and Applications.
Yager, Ronald, and G. Pasi. (2002). “Modeling Majority Opinion in Multi-Agent Decision Making.” International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems.
Yoo, Byoung Hyun, Junhwan Kim, Byun Woo Lee, Gerrit Hoogenboom, and Kwang Soo Kim. (2020). A Surrogate Weighted Mean Ensemble Method to Reduce the Uncertainty at a Regional Scale for the Calculation of Potential Evapotranspiration. Vol. 10. Springer US.
Yugander, P., C. H. Tejaswini, J. Meenakshi, K. Samapath Kumar, B. V. N. Sures. Varma, and M. Jagannath. (2020). “MR Image Enhancement Using Adaptive Weighted Mean Filtering and Homomorphic Filtering.” Procedia Computer Science 167(2019):677–85. doi: 10.1016/j.procs.2020.03.334.